Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke
نویسندگان
چکیده
Focal stroke is a disabling disease with lifelong sensory, motor and cognitive impairments. Given the paucity of effective clinical treatments, basic scientists are developing novel options for protection of the affected brain and regeneration of lost tissue. Tissue bioengineering and stem/progenitor cell treatments have both been individually pursued for stroke neural repair therapies, with some benefit in tissue recovery. Emerging directions in stroke neural repair approaches combine these two therapies to use biopolymers with stem/progenitor transplants to promote greater cell survival in the transplant and directed delivery of bioactive molecules to the transplanted cells and the adjacent injured tissue. In this review the background literature on a combined use of neural stem/progenitor cells encapsulated in hyaluronan gels is discussed and the way this therapeutic approach can affect the important processes involved in brain tissue reconstruction, such as angiogenesis, axon regeneration, neural differentiation and inflammation is clarified. The glycosaminoglycan hyaluronan can optimize those processes and be employed in a successful neural tissue engineering approach.
منابع مشابه
O10: Thrombo-Inflammation in Acute Ischemic Stroke
Ischemic stroke has been classified as a merely thrombotic disease, so the main goal of its treatment is the recanalization of the occluded vasculature. However, despite fast restoration of blood circulation, progressive stroke still develops in many patients, which has led to the concept of reperfusion injury. The underlying mechanism is only partly known. Though, it is accepted now, tha...
متن کاملHydrogel matrix to support stem cell survival after brain transplantation in stroke.
Stroke is a leading cause of adult disability. Stem/progenitor cell transplantation improves recovery after stroke in rodent models. These studies have 2 main limitations to clinical translation. First, most of the cells in stem/progenitor transplants die after brain transplantation. Second, intraparenchymal approaches target transplants to normal brain adjacent to the stroke, which is the site...
متن کاملBone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice
Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) wit...
متن کاملSafety and feasibility of intravenous thrombolytic therapy in Iranian patients with acute ischemic stroke
Background: Thrombolytic therapy is the only approved treatment for acute cerebral ischemia. The hemorrhagic transformation is the greatest complication of this treatment, which may occur after recanalization of occluded artery. The aim of this study was to determine factors associated with clinical improvement and worsening in patients with acute ischemic stroke treated with intravenous th...
متن کاملStudy on Effect of Head, Tail, and Limbud extracts of Mouse on Differentiation of Hair Follicle Stem Cells to Neural cells
Introduction: Adult stem cells are the group of cells which conserve their nature in tissues and organs among other cells. In recent years, the researchers reported the existence of stem cells on the Bulge of hair follicles near to the smooth muscle. It is possible to differentiate these stem cells to neural cells by induction of Shh, FGF, and RA factors. Because of existence of these factors ...
متن کامل